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A novel exact dynamical real-space renormalization group for a Langevin equa- 
tion derivable from a Euclidean Gaussian action is presented. It is demonstrated 
rigorously that an algebraic temporal law holds for the Green function on 
arbitrary structures of infinite extent. In the case of fractals it is shown on 
specific examples that two different fixed points are found, at variance with 
periodic structures. Connection with the growth dynamics of interfaces is also 
discussed. 
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1. I N T R O D U C T I O N  

D y n a m i c a l  r e n o r m a l i z a t i o n  g r o u p  ( D R G )  ana lyses  o f  the  cr i t ica l  d y n a m i c s  

of  s t a t i s t i ca l  m e c h a n i c s  m o d e l s  h a s  a l o n g  h i s t o r y  t4)" 5 w i th  v i r tua l ly  all  

s tud ies  o n  r e g u l a r  t r a n s l a t i o n a l l y  i n v a r i a n t  s t ruc tu res .  T h e s e  a p p r o a c h e s  

were,  b o t h  in real  a n d  in m o m e n t u m  space ,  o f  a p e r t u r b a t i v e  n a t u r e ;  in 

c o n t r a s t ,  t he  p r i n c i p a l  a i m  o f  the  p r e s e n t  p a p e r  is the  i m p l e m e n t a t i o n  o f  
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an exact  approach, in real space, for the dynamics occurring on fractal 
structures. 

Consider a system described by a Hamiltonian (or action) H({~o}) 
with the field variables q~.~ defined on the lattice sites x. The simplest 
Langevin ~tj dynamics leading to equilibrium with the correct Boltzmann 
weight exp[ --H({~p} )] is 6 

0q~x(t) &H({ cP} ) + r/x(t) (1) 
at &Px 

The temperature has been absorbed in the definition of H. The stochastic 
noise q.,.(t) is chosen from a Gaussian distribution 

( ~ ,/~_(r)~4D J ~ ( { l l ( t ) } ) = ~ + ~ - ~ e x p  - fd~  (2) 

(J~'-~ is a normalizat ion factor) which has a zero average and variance 
( t /x( t )  r/9,(t')) = 2D&x.y&(t - t'). 

We consider the simplest possible choice of the Hami l tonian H( {  tp} ), 
the Gaussian model: 

x . r  (xy  > 

where a.,. depends on temperature and the scale of ~Px is such that the 
second term in (3), i.e., the sum over nearest-neighbor sites, has coef- 
ficient 1. 

Besides being the starting point of more complicated models, the 
Gaussian model is related to many physical situations such as the proper- 
ties of an ideal polymer in solution, ~5~ diffusion processes, and the growth 
dynamics of interfaces. ~6~ Indeed, if a x = k  -~ for any x, then the 
Hamiltonian (3) describes the equilibrium properties of an ideal linear 
polymer in solution with a monomer fugacity equal to k. If ax = zx, the 
coordination number of site x, the Hamiltonian (3) can be rewritten as 

H =  �89 ~ (r ~p.,,)2 (4) 
<x,y> 

and it is related to the diffusion process known as the ant & the labyrinth 
(ref. 5; for review see, e.g., ref. 7). 

If cpx represents the height of an interface above the substrate point x 
(in the solid-on-solid approximation), then Eq. (3) can be interpreted as 

6 A clear presentation of this point of view is ref. 2. 
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the energy of an interface and the Langevin equat ion (1) describes its 
dynamics. In a regular (hyper)cubic lattice this is known as the 
Edwards-Wilk inson model for interface dynamics. 16~ 

We shall show, in specific examples,  that  in the presence of nontrans-  
lational structures (such as fractals) even the simple model (3) gives rise to 
interesting behaviors. Specifically, we will show that two  different fixed 
points are present, unlike in structures with translational invariance, where 
they collapse to the same fixed point. Some of the results presented here 
appeared in ref. 8. 

The paper  is organized as follows. In Section 2 we introduce the D R G  
technique for this problem first in the simple case of  a one-dimensional 
lattice and then in a situation in which the couplings have a hierarchical 
structure. In Section 3 the nontrivial cases of  fractal structures with 
uniform and nonuniform coordinat ion number  are analyzed. In the latter 
case it will be shown that there is an additional universality class. Section 4 
contains both  rigorous and heuristic arguments  on a general network and 
for a nonlinear case. The heuristic arguments  are then checked by the 
numerical analysis of  Section 5. Finally in Section 6 some closing conclu- 
sions are presented. 

2. O N E - D I M E N S I O N A L  LATTICE 

We shall start  with the simple case of  a one-dimensional lattice. After 
a pedagogical example with uniform couplings, we will turn to a nontrivial 
example. In the latter case only D R G  allows us to obtain the asymptot ic  
solution. 

2.1. Uni form Couplings 

Let us start  with a one-dimensional case in order to show how the 
method works. Equat ion (1) for the Hamil tonian (3) with a.,. = a has then 
the form 

aq, x(t) 
= (cp.,. _ j(t) + cp.,. + ,(t) - acp.,.(t)) + q.,.(t) (5) 

Ot 

It is immediately clear that  if we were to choose uncorrelated noise, 
decimation would produce correlation between the nearest-neighbor noises. 
We thus assume a nearest-neighbor correlation to start  with, that is, 

(rL,.(t ~ ) q.,,(t2)) = 2Dx, , ,6( t~  - t2) (6) 
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where D., . .y=Dofx ,  y+D~f. , .+L., , .  As usual it is convenient to work in 
(time) Fourier space: 

~@.~(w) = 0.~_ ,(o~) + @x+ ~(~o) + O.,.(w) (7) 

where 

f,.( t ) _ I + ~ d~ i ( o ,  ^ -~ .  ~-~n e -  Z,-(oJ) (8) 

and ec = a - i ~ o ,  

Upon decimation of (e.g.) the odd sites in favor of the even ones [i.e., 
solving Eq. (7) for ~b2x• in terms of ~bz,, and ~b2.,.• we get an equation 
for the surviving (even) sites: 

(~2 - 2 )  ~bz.~(co) _ ~b2.,._ z(o~) + ~bz~ + z(w) + CZx(a~ ) (9) 
(X 0C 

where we have defined a new noise (.,.(co) as 

(2.,.(oJ) = O~_.~(co) + q2x - ~ ( ~ )  + 02.,- + ,(co) (10)  
(X 

which is correlated as 

((x(co,) (,.(co2)) = 2/3 ....... (2n) 6(w ,  + 002) 

where as before/3.,..:.=/3o6~.,.+/316,.+ l.y and 

(11) 

/ 3 ~ 1 7 6  + D ' 4 -  cx (12a) 

/3, --- Do 1 + D1 2 (12b) 
0f.~ (X 

Therefore the new noise keeps the same correlation as the original one and, 
being a linear combination of Gaussian noises, is itself a Gaussian noise. 
With the redefinitions 

~b,_.j~, D) = ~tA~bx(0d, D') (13a) 

~ ' = ~ 2 - 2  (13b) 

~.~ = AO',., ( 1 3 c )  
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the Langevin equation preserves its original form. The static recursion 
relation for a is obtainable from (13b) for co = 0, i.e., 

a '  = a  2 - 2  (14) 

from which the recursion equation for o9 is derivable. Indeed if a = a -  iog, 
then a'  = a '  - iog' with 

co' = 2aco - ico 2 (15) 

^ ! ^ t t The variance of the new noise is (qx(og~)q,,(o92))=2D.~,y(2n) 
fi(og]+og~) with D'(og')=T(og).D(og). Here we have defined the 1 •  
matrix 

and T is the transmission matrix which, in the long-time limit o9 ~ 0, 
becomes 

T=~_2(l+2/a2 4/a~ 
I/a 2 2/aJ (16) 

It is important to note that the amplitude A, which is always allowed since 
it drops out from the final equations, is determined by the fixed-point con- 
dition on D. The critical fixed point of Eq. (14) is a* = 2  [model (3) in ld 
is meaningful only for a/> 2]. Since we are interested in critical dynamics, 
we will put a = a *  = 2 in what follows. By setting the determinant of the 
system giving the fixed point for the matrix D equal to zero one obtains 
two solutions (two lines of fixed points corresponding to fixed ratio Do/D~) 
associated respectively with A* =21/2 and A* = 2  3/2. It is easy to see that 
the first choice leads to an unstable solution, while the second results in a 
stable one. Indeed, let A+ and A_ be the two eigenvalues of the transmis- 
sion matrix T, and u+ and u_ the corresponding eigenvectors. Then if we 
start with an initial state D 

D=c+u+ +c_u_ (17) 

(c+ being the coefficients of the expansion in the basis of eigenvectors), 
upon iteration of the RG transformation, the variance grows unbounded 
with the choice A * = 2  ~/2, while it is driven toward a stable fixed point 
D * =  c+ u+ with the choice A* =23/2. 
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We now have the means to compute the critical exponents of  interest. 
From Eq. (13a) we have, at the stable fixed point, for a generic scaling 
factor b > 1, 

Ohx(co, D* ) = br x( b~co, D* ) (18) 

where ~b = 5/2, z = 2 is the dynamical exponent z, and we have written 
q3(co, D) instead of  ~b(2-ico, D). The exponent ~b can be related to the 
scaling of  the two-point correlation function: 

Gx..(t],  t 2 )=  (q~.,-(t]) ~p ,(tl)) (19) 

where the average is over noise configurations. Using Eq. (18), we get 

Gb"'~ t2)-b2(~--)G* ~  ~ '" \b:  (20) 

The properties of  the equal-time correlation function can now be easily 
derived. If  we define the function W2(L, t)= GL, o(t, t), we end up with the 
following scaling form: 

t 
W(L, t ) = L  F|-7-;! (21) 

\ L - /  

with a = ~b - z = 1/2 and z = 2. 
A few comments are in order. If cp.,. represents the height of  an inter- 

face above the substrate site x, Eq. (5) with a=a*  = 2  coincides with the 
growth equation proposed by Edwards and Wilkinson (6) with unit surface 
tension v, namely 

O~~ - vV2cp ~(t) + rl~( t ) (22) 
0t " " 

where V 2 is the discrete Laplacian defined as 

V2qL,.= Y' (~Ov-q~x) (23) 
),(x) 

Here the notation y(x) means that the sum is restricted to the nearest 
neighbors of  x. Then W(L, t) coincides with the width of  the interface, 
which, as a function of time and of the lateral extent of  the substrate L, is 
found to exhibit the general scaling form (9) W(L, t)oc L~f(t/L~), which 
reduces to W(L, t) oct ~ for t ,~ L-" and to W(L, t) oc L ~ for t >> L z, where 
oc = flz and z is the standard dynamical exponent. (~) 
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For a d-dimensional substrate, Edwards and Wilkinson t6) found 
f l=max((2-d)/4,0)  and z = 2  with an upper critical dimension of 2. 
Above d =  2 the interface is almost flat with ct = f l=  0. Our  results on a 
one-dimensional case thus coincide with the exact results. We shall now 
apply the same methodology to a nontrivial case. 

2.2. Hierarchical Couplings 

A rather interesting case which lacks translational invariance and 
which can be solved only by RG techniques is the case of a one-dimen- 
sional lattice where, however, the coupling between nearest neighbors is 
hierarchically distributed as in Fig. 1. In the case of diffusion, models of 
this kind have already been studied/~~ ~ 

In the present context we start from the modified Hamiltonian 

H ( { ~ 0 } ) = ~ - ~ p ~ _ - -  ~, w,...,,cp.,.cpy (24) 
x : ' ~ -  <xy) 

where wx,,,= %,.,. have the hierarchical structure defined as follows (see 
Fig. 1 ): 

re,, ,  n i> 1 
Wx. x - 1 ~--" W.x - I, x ~ '~(rio -~" 1 (25) 

where x = ( 2 m + l ) 2 "  ( n , m = 0 ,  1,2,...) and wx,,,,=0 if I x - y ] > l .  The 
choice e o = 1 can be made without loss of generality by a proper rescaling 
of the time scale. 

As in the previous example, we will work at criticality. This 
corresponds to the choice ax = ~y=x+_~w,..y, i.e., 

H = �89 ~ wx.y(~o.,. - ~O.v) 2 (26) 
( x , y )  

The implementation of the RG transformation closely follows the one 
used in the diffusion case ~'~ ~ and it is based on the decimation of the sites 
indicated by circles in Fig. 1. Interestingly, due to the particular decimation 
scheme chosen, the minimal set of parameters for the variance which are 
invariant under RG transformation is Dx, y = Do~,...,. + D,  26.1, . v + l ,  where 

Eo El E2 E3 
O O O O O O O O 

Fig. 1. Par t  of a one-dimensional  lattice with hierarchical  coupl ings between the nearest  
neighbors. Thicker  bonds  correspond to weaker  coupling. Circled sites are el iminated after 
one RG step, which scales the system by a factor of 2. 
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one uses D~ (D2) if w x ,, = eo (e,,) respectively. In other  words,  a single self- 
correlat ion but  two different neares t -neighbor  correla t ions  are involved. 
The recursions turn out  to be 

2 

~,bb.,-(co, D) = A ~ l - -  ~bx(co, ' D ' )  (27a) 
el 

e',, = e,,+ ] -  (n = 1, 2,...) (27b) 
el 

co' 2 (1+2e~)  - (.0 + O(co 2) (27c) 
e] 

O,,L(co)e~ + O:,,(co)~, 
AO: (co') = 0x' (co) + (27d) 

where ~ l = - i w + l + e l  and  YL (YR) are left (r ight)  sites which are 
decimated with respect to the barr ier  el .  Apar t  from the noise cont r ibut ion ,  
the recursions are the same as in the case of  diffusion. Ij~ l]) It proves con- 
venient to define R,, = e,,+ l/e,, since, upon i terat ion of  Eq. (27a), it flows to 
a fixed point  R ~ (0, l ] and then the analysis of the fixed points  is reduced 
to a study of a two-dimensional  map  in the {el, co} plane. There are two 
fixed points  O = ( e * =  + c 6 ,  c o * = 0 )  and A = ( e * = R / ( 1 - 2 R ) ,  c o * = 0 )  
whose stabili ty depends upon  the value of  R. We will dist inguish two 
cases: 

(A) R < 1/2: A is stable and O is unstable and y = d w =  ln(2/R)/ ln  2. 
The co ---, 0 + limit of  the t ransi t ion matr ix  T is 

T =  (2/R) A -'- c, o, 

where a (R)  = 2( 1 - R + R-" ), b(R) = 2( 1 - R), c(R) = 2R( I - R), d(R) = 2R, 
e ( R ) = I - 2 R + 2 R ' - .  The value of A* which yields a stable fixed line is 
A*=(4 /R)  ]/2. Then, proceeding as in the previous example,  one finds 
again 

y -  1 [In R[ 

2 21n 2 

as expected, since in this case dr= d= 1. 
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(B) 
the equal-coupling case. The matrix T is 

R > 1/2: O is stable and A is unstable and then y = dw= 2 as in 

T = 4 A - 2  21 1 21 

0 

which yields A* = 2  3/2 (again as in the equal-coupling case) and conse- 
quently ~ = 1/2. 

3. FRACTALS 

An interesting non-translationally invariant case which can be 
analyzed with the technique described above is the case of  fractal struc- 
tures. We will consider several examples which are prototypes of different 
physical situations. 

3.1. Fractals wi th  Uniform Coordination Numbers 

The first example is the standard Sierpinski gasket shown in Fig. 2, 
whose fractal dimension is at:= In 3/ln 2. In this case, as on translationally 
invariant structures, there is only one fixed point. The renormalization 
group procedure is readily implemented in the Fourier-transformed equa- 
tion of  motion (1) for the Hamiltonian (3), which reads 

~.,.~x(CO) = ~ ~b,,(co) + 0x(co) (28) 
y( x ) 

where 0c x = a , . - / co  and the sum is over nearest neighbors of  x. The setup 
for the noise is the same as in the one-dimensional case. As before, we put 

/ 

/" 

2 C 

/~ v A 
/ k / k 

Fig. 2. P a r t  o f  an  hal-mite Sierpinski g a s k e t  in  d = 2. C i r c l ed  s i tes  1, 2, 3,... a re  e l i m i n a t e d  in 
favor of surviving sites A, B, C,... after one RG step, which scales the system by a factor 2. 

822/79/3-4-12 
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directly a = a * =  4, corresponding to the static fixed point. Then, following 
standard procedure, the RG transformation is carried out in two steps: 

(a) The ~b.~ on the circled sites in Fig. 2 are eliminated in order to 
rescale the system by a scale factor b ( = 2  in this case). This may be done 
by solving Eq. (28) for ~bx (x = 1, 2, 3) in terms of ~b~, (y = A, B, C) (see 
Fig. 2) and substituting the resulting equations back into (28). 

(b) ~bx and #x are then suitably rescaled as follows: 

~bbx(og, D ) =  A(o9 + 6) ~bx(og', D') (29a) 

A0.<(o9')=(o9+5)(o9+2)#.,.,(o9)+2 ~ 0y(o9)+(o9+4) ~ 0.,,(o9) 
y(x') vttx')) 

(29b) 

co' =09(5 -iog) (29c) 

where primed (unprimed) sites refer to the surviving (decimated) sites 
under the RG transformation, and y(x) and y((x)) are the decimated 
nearest neighbors and the decimated next nearest neighbors, respectively. 

The procedure for calculating the amplitude A* corresponding to the 
stable fixed point proceeds along exactly the same lines as the one-dimen- 
sional case: again the minimum set of parameters which are invariant 
under the RG transformation for the noise is {Do, D l} corresponding to 
the self and nearest neighbor correlations, respectively. It is noteworthy 
that the presence of noise does not influence the renormalization of time, 
thus prompting the identification of the dynamical critical exponent z with 
the fractal dimension dw of the walk on that structure giving the end-to- 
end distance R(t) of the ant in the labyrinth at large t, i.e., R(t)~t  I/u'v. 
This is given by (29c) in the o9 ~ 0 limit as co'= bd"w. One then finds the 
following critical exponents: 

z=dw, f l = 2 - d s  ~S~_~dw=dw~2 d f 4 ' ct = (30) 

with dw= In 5/ln 2 and ds=2dF/dw=ln 9/ln 5 is the spectral dimension 
describing the low-frequency behavior of the density of vibrational 
modes/12'~3~ A similar analysis can be carried out for a general 
d-dimensional Sierpinski gasket. 

3.2. Fractals wi th  Nonuni form Coordination Number 

In the previous example we investigated the effect of the self-similarlity 
of the structure on the scaling of the two-point correlation function for a 
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Fig. 3. Part of an infinite T-fractal in d = 2, which has coordination numbers z = 1, 3. Circled 
sites are eliminated after one RG step and this scales the system by a factor 2. 

Langevin equat ion induced by a Gauss ian  Hamil tonian .  However,  in that  
example the coord ina t ion  number  was uniform (equal to 4) as in the trans- 
la t ional ly invariant  lattice. The interplay between self-similarity of the 
substrate  and nonuniformity  of  the coord ina t ion  number  has been recently 
investigated. (t4~ Con t ra ry  to what  happens  on per iodic  structures, it has 
been shown that  on both  statistical and determinist ic  fractal structures the 
equi l ibr ium proper t ies  of  (3) are governed by two universali ty classes, 
cor responding to ideal polymers  and to the ant  in the labyrinth/~4~ We 
now study this effect on the Langevin equat ion on specific examples. The 
T-fractal  (Fig. 3) has z x =  1, 3, whereas the branching Koch curve (BKC)  
(Fig. 4) has -x = 2, 3. 

We stress again that  the appearance  of  two fixed points  is a feature of  
nonuni form coord ina t ion  number  and a fractal structure. 

In the recursion relat ions we will derive below, the (minimum) set of  
parameters  invar iant  under  R G  t ransformat ion is given by Dx, y=Do~ if 

Fig. 4. 

A . . .  

Structure of the branching Koch curve in d = 2, which has z = 2, 3. Circled sites are 
eliminated after one RG step, which scales the system by a factor of 3. 
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x = y (z is the coordination number), and Dx.y = D~ if x and y are nearest 
neighbors and Dx.y= 0 otherwise. We will write 

D =  ~Do3~ and e =  ( e ' )  
( . D r )  ~ 

With this distinction in mind, calculations along the same lines as before 
yield the following recursions: 

OClO~ 3 - -  1 
Obx(~, D) = A - -  c~x(~', D') (31a) 

AOI':'(~176 + E [~'O_v,(~)WO.,'3(~176176 - 1 )  (31b) 
y ( x )  

and 

0t~l = 0tl0C3 -- 2 
(31c) 

~<~ = o < ] -  <~/o<, - 3 

In the above definitions 0.,,,,y3 represents the noise associated with sites of 
coordination 1 and 3, respectively. 

In the static limit, co = 0, one has 0c~ =ax  and as found in ref. 14, 
the recursion equation (31c) admits two fixed points (see Fig. 5): 
G=(a*,a*)=(1,3), correr_~_ponding to the ant in the labyrinth, and 
P = (a*, a*) = ( oo, ( 1 + x/13)/2), describing the scaling behavior of the 
ideal polymerJ ~41 (The symbols G and P denote growth and polymer, 

G 
. . . . . .  

a3 

Fig. 5. Flow diagram for the RG analysis for the T-fractal example. Fixed points G and P 
correspond to growth and polymer dynamic, respectively. The line L is the critical line 
delimiting the unphysical region. 
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respectively.) Indeed, the linearized recursions (it is better to work with a 3 
and a3/a~) show that G is unstable (two relevant eigendirections) with a 
thermal exponent y a = l n  6/In2, which coincides with dw]  12" ~3~ the ran- 
dom walk dimension, while P is stable (one relevant and one irrelevant 
eigendirection) with ye=ln ( l+ . v / -~ ) / l n2  related to the end-to-end 
distance R of an ideal polymer of length N according to N ~  Rye. 

Now let us turn to the dynamics. In the long-time limit, i.e., co--* 0, 
and near the above static fixed points one has ct.~ = a,*.. This implies that 
under renormalization co rescales as co(b)~bYco: thus the dynamical 
exponent z is equal to the thermal exponent y appropriate to the fixed 
point. From Eq. (31b) one can easily calculate the new noise correlation 
functions near the fixed point. The recursion equation is 

D'= T . D  (32) 

with 

at the fixed point G and 

T = 6 A - 2  ~ 

2a 0 a 2 } 

T = 2 a - l A - 2  2a 1 a 2 

6a 0 1 + 3a 

with a - t =  (1 + v / ~ ) / 2  at the fixed point C. 
Thus, choosing the value of A so that the largest eigenvalue is 1, one 

finds that the corresponding eigenvector D* is a stable fixed point. Near 
the fixed points, from Eq. (31a) one readily deduces the scaling of 
(~.,.(co, D*) [we are writing ~x(co, D*) instead of ~x(a*-ico, D*)] in the 
co --, 0 limit: 

~bx(co, D*) = b~'+ :~x(b~co, D*) 

From (31a) and (33), one finds ( b = 2 )  

Y a - d f  _ 1 Y e -  1 0.601 ... 
~ a =  2 - ~  at G, ~e 2 

(33) 

at P (34) 

where df= In 3/In 2 is the fractal dimension of the structure. We will show 
below that the expression for ct o is completely general. Since YG = dw and 
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the spectral dimension d s describing the low-frequency behavior of  the 
density of vibrational modes satisfies the scaling relation t13~ ds= 2ds/dve, 
the result (34) for ct~ can be rewritten as otG=(2-ds)dw/4. Taking into 
account that z = d, , ,  one gets fl = (2 - ds)/4. 

An extension of  the T-fractals to sites with coordination z = 1, 4 leads 
to exactly the same expressions as before with the same numerical value of  
0~ c = 1/2 with a slightly higher value 0~ e = 0.678... for the other fixed point. 
Thus the ~a is the same as in the ld model of  Section 2. 

A more interesting example, because it is a structure with loops, is the 
case of  the branching Koch curve (see Fig. 4). Calculations in this case are 
rather tedious but quite analogous to the previous example and we will 
omit annoying details. Also in this case it is sufficient to start with a 
variance Dx, y = Do=6y. ~ + D161x_ yl, ~, where D0~ is defined as before and 
with two a's,  a~ and a2, corresponding to two types of  coordinations. At 
the fixed point G =  (a* = 2 ,  a~' = 3) one finds again o~c=(yc-df)/2 with 
yG=dw=ln(40/3)/ln3 and d y = l n 5 / l n 3 ,  consistent with the previous 
claim of  a general form. The other fixed point P = (a* = + ~ ,  a* = x/~) 
yields Ye = In 1 l/In 3 and c~ e = In 2/ln 3 = 0.6309 .... Notice that in the above 
example ~c ~< I/2, whereas c~ e > 1/2. 

4. GENERALIZATIONS: GENERAL NETWORK AND 
NONLINEARITY 

Equation (1) with Dxy = Dt~xy evolves to an equilibrium state with a 
probability distribution for {~p} given by 

{-v } 
~q({Cp}) oc exp - ~  ~ (~o~--q%,) 2 (35) 

<xy) 

where x and y are nearest-neighbor sites. 7 The equilibrium correlation 
function ((cp x -  q~0) 2) r defined as in Eq. (19) calculated with the weight 
(35) can be shown ~'~ to be proport ional  to the resistance f2x. o between 
two fixed sites 0 and x of  the fractal network where conductances (equal 
to v/D) connect nearest-neighbor sites, that is, 

( ( r  r ~ (2x. o ~ Ix[ r (36) 

where the last equality defines the exponent ( for the resistivity. Scaling 
arguments predict that for fractals ( =  d . , - d f  (Einstein relation)/f61 Since 

This can be deduced from the stationary solution of the Fokker-Planck equation associated 
with the Langevin equation (1): see any textbook on stochastic processes (e.g., ref, 15). 
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the roughness exponent 0t is defined by [see Eqs. (19), (20)] ((~o~- 
~po)2)r~lX[ 2", one finds o~=(dw-ds ) /2=dw(2-ds ) /4 .  On the basis of 
the previous exact RG, we argue that the o9 renormalization [Eqs. (31) and 
(33)] is not influenced by the noise term in Eq. (1). We also note that 
Eq. (1) without the noise term is merely the diffusion equation with q~x(t) 
interpreted as the probability of finding a diffusing particle at x at time t. 
If co renormalizes as co'= b% to leading order, then the mean square dis- 
tance traveled after time t behaves asymptotically like tZ /z ,  ~11~ implying 
Z ~ d W "  

We now show that the temporal behavior of the width of the interface 
W(t) for a substrate described by an arbitrary infinite network is also given 
by t ( 2 - d s ) / 4  (provided that ds can be defined~7)). This is a nontrivial result 
since we prove not only that the temporal growth has a power law form, 
but also obtain the exponent. The proof is heavily based on the rigorous 
results of Hattori et al. ~8~ (HHW). We assume as initial condition 
~o.,.(t = 0 ) = 0 .  Let us go back to Gx:,(t)= (r where the average 
is over the noise as defined in Section 1. The formal (forward) solution of 
Eq. (22) can be written as 

q~x(t) = ~, .I? dr U v,(t - r) q,,(r) 
Y 

- u  

is the retarded Green function, associated with where U,.,y(t) 
satisfying 

that is, 

( O - v V ~ )  Ux ~(t)=O~,,,6(t) 

(37) 

(22), 

(38) 

(39) Ux, y(t) = 0(t)(e'VV-')x. y 

where 0(-) is the step function. 
Using (38), we have 

Gx, .t0(t) = (cPx(t) ~px0(t)) = 2D ~ .I~ dr Ux, y ( t -  r) U,.0, ( t -  r) 
V.' 

= 2 0  f ?  Ux, xo(2(t-- r)) (40) 

where we have used the condition (qx(tl) qy(t2)) = 2D~,y6(t~ - t2). 
Due to the initial condition Uxo. x(0 +) = 6x0,.~, Gx, xo(t) is a solution of 

( ~ - 4 D v V ~ ]  G ...... , ( t)=fx.y2D (41) 
\ u t  / 
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It is then easy to verify that a probability P~..,.o(t) defined through 

_ f4o,  Gx xo(t) dr P~ .~o(r) 
�9 - - a o  - ,  

is a solution of the diffusion equation 

(42) 

( ~ t - v V ~ )  P~,x0(t) = 0 (43) 

The results of  ref. 18 can now be applied to Eq. (42) defined on the 
sites of  an arbitrary graph. Since, under very general conditions, 
Pxo.~o(t) ~ t -as/2, from Eq. (42) we get 

W2(L, t ) IL=~  = G~o, ~o(t) ~ t2# (44) 

where fl = (2 - ds)/4 as expected from the previously solved cases. 
F rom the same procedure one can recover also the exponent ~. Indeed 

if we assume the standard ansatz which appears to be valid for a generic 
fractal,~ ~9 

P,.. xo(t) = ta~2 ~ ( t  Ix-x01-') (45) 

and using Eqs . (42)  and (44), one finds W(L, t )=L~f ( t /L  "-) with 
= dw(2 - ds)/4 as before (for s o and z = y). 

We now turn to nonlinear growth on a fractal. We conjecture that the 
analog of  the nonlinear growth equation of  ref. 20 is given by 

0~Ox(t) 
Ot =v ~ [ q ~ y ( t ) - c p x ( t ) ] + 2  ~ [cpy(t)-go,.(t)]2+qx(t) (46) 

y(x) )qx) 

where now q~,.(t) is to be interpreted as the height of  the substrate at posi- 
tion x at time t. The 2 term takes into account the lateral growth of the 
aggregateJ 2~ When 2 = 0 we recover Eq. (22). Under  rescaling of a factor 
b of  the length, the left-hand side and the first two terms of  the right-hand 
side scale as b ~-z, b ~-a'V, and b 2a-d', respectively, where b -d'' c o m e s  from 
the Laplacian on a fractal. 8 In the absence of  the 2 term, dimensional 
analysis yields z = d w  (found above), whereas the presence of the 2 term 
leads to the time derivative on the left-hand side balancing the 2 term: 

o~ + z = d w  (47) 

8 Since on an inf'mite lattice Y'x ~ox(t)Y'~,~.~ [ cpy(t)- cp.,.(t)] = - ~ x  5~ylxl [ ~%(t)- r 2, the 
scalings of the first two terms on the r.h.s, of Eq. (46) differ by a factor b ~ (scaling of ~o). 
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with the v term being subdominant. Equation (47) generalizes the exact 
equationC23.24) for Euclidean lattices which are characterized by d w =  2. 

Additionally, following ref. 21, if we identify the dimension of the noise 
term to be b ~+di~/2 (this is expected to hold in the linear case where the 
2 term is absent) and extending the dimensional analysis, we find again 
Eq. (34) for ct a. 

In the presence of the 2 term, one may conjecture that the noise term 
scales as b -t-'+~cv2, where dc is the chemical dimension of the fractal, t2-'~ 
With this ad hoc assumption one finds for Eq. (46) 

2 + d  c 1 dw 
z = d w 3 + d c '  f l = 2 + d c '  ~ - 3 + d , .  (48) 

leading to ~=0.5064, fl=0.2789 in d = 2 ,  and 0t=0.5170, fl=0.2500 in 
d = 3  Sierpinski gaskets. [For  the gaskets in d dimensions de=d1= 
In(d+ 1 )/In 2 and dw = In(d+ 3)fin 2)13)] 

We stress the fact that Eqs. (47) and (48) have been derived simply on 
the basis of power counting, and reduce to previously known approxima- 
tions on translationally invariant structures, t21,22~ 

5. N U M E R I C A L  A N A L Y S I S  

In order to verify Eq. (47) and check the conjecture leading to 
Eq. (48), we have carried out computer simulations of growth models on 
Sierpinski gaskets. We considered a sequence of sizes of gaskets in both 
two and three dimensions, the largest one containing 1095 and 2050 sites, 
respectively. The value of ct was estimated by comparing the scaling of the 
saturated roughness with system size, whereas fl was deduced by studying 
the temporal dependence of the roughness for the larger sizes [-i.e., 
W(L, t) ~ L ~ for t >> L-" and W(L,  t) ~ t p for t ,~ L~]. 

To check the correctness of the programs, we first studied the linear 
growth process in both d =  2 and 3 by adding and subtracting particles on 
the gasket sites with the same probability and found excellent agreement 
with the exact results of Eq. (34). 

The nonlinear case was then studied by carrying out simulations of the 
Kim-Kosterlitz ~22) growth model for the gaskets; the numerical results con- 
firmed the validity of Eq. (47). Specifically we found ~ = 0.48 _+ 0.02 and 
fl = 0.26 _+ 0.02 ill d-- 2, whereas ~ = 0.48 _+ 0.02 and fl = 0.23 4- 0.02 in d = 3. 

6. D I S C U S S I O N  A N D  C O N C L U S I O N  

Our discussion so far has been restricted to growth on fractal sub- 
strates with the particles arriving along a space dimension orthogonal to 
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that in which the fractal resides. One might also consider growth on a self- 
affine substrate (with no overhangs, so that all sites are accessible to the 
incoming particles) with the growth occurring in the direction normal to 
the rough surface, but yet in the d-dimensional hyperplane in which the 
surface resides. In this case, the resulting growth would be characterized by 
the regular exponents in d - 1  dimensions. This follows readily from two 
observations: 

(i) The exponent ~ characterizing the growth is a measure of the 
equilibrium roughness and does not depend on whether the initial 
configuration is a self-affine or a planar interface. 

(ii) It is reasonable that the exponent z which may be defined by 
studying the relaxation of small perturbations around equilibrium is 
typically the same that characterizes the approach to equilibrium from any 
initial configuration. 

The exponent fl is deduced directly from e and z. Thus the growth 
exponents in this case are trivially determined. 

Another observation is noteworthy. The results given here are valid for 
systems of continuous symmetry spins where, to the best of our knowledge, 
no analog of Henley's argument, valid for Ising spins undergoing Glauber 
dynamics, ~ is known. 

In conclusion, we have presented a complete analysis of linear 
Langevin dynamics. The analysis has been carried out in real space and is 
based on a combinations of RG analysis, rigorous results, and heuristic 
considerations. 

The primary results of our dynamical RG analysis are: 

1. For Eq. (22), i.e., for linear ~6~ growth processes, the width of the 
interface grows algebraically with time and the exponent f l = ( 2 - d s ) / 4 ,  
where ds is the spectral dimension of the substrate. We stress that it is not 
common to demonstrate explicitly in a rigorous way such a power law 
behavior. Indeed, this result is valid not only for a fractal substrate, but for 
any generic substrate: d s can be rigorously defined ~tS) for almost ~17) all 
infinite graphs consisting of a set of nodes and links joining sites that are 
defined to be nearest neighbors. 

2. For a fractal substrate, z = dw, and a = ( 2 -  ds)dw/4,  where dw is 
the random walk dimension characterizing the asymptotic behavior of the 
root mean square distance R traveled after a time t, R ~ t 1/a'' (d,;,  ds, and 
the fractal dimension d s are related by d s =  2df /dw 126" 12~). 

3. For both fixed points of the Hamiltonian (3) the dynamical expo- 
nent z coincides with the thermal critical exponent y of the corresponding 
static problem. 
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Result 1 is rigorous, while results 2 and 3 are based on exact 
arguments. For the nonlinear growth model (46), heuristic arguments and 
numerical analysis suggest that Eqs. (48) and (49) are at least good 
approximations. 
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NOTE ADDED IN PROOF 

It must be noticed that Langevin equation (1), with the Hamiltonian 
(3) and a noise correlated over nearest-neighbor sites as in Eq. ( 11 ), leads 
to an equilibrium distribution: ~({~0})oc exp[-/- l({~o})],  where the 
Hamiltonian /~ contains interactions which are short ranged, but not 
limited to nearest-neighbor sites as in H. 

It may be proved that the static correlation functions corresponding to 
H a n d / 1  exhibit the same long range behavior. 
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